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Abstract By defining a structure factor matrix we propose a generating function muix method 
for studying random walk on a class of latices. such as superWiees or crystals with finite k 
atoms per cell. As an illustntion of this method. the problem of random wdks on a one- 
dimensional dimeriwtion chain is solved exactly. 

It is well known that random walk theory has been applied to many fields of science 
and technology ranging from astronomy and solid state physics to polymer chemistry 
and biology. Many problems such as diffusion, Brownian motion, lattice vibrations, spin 
waves, polymer in solution, chemistry kinetics and so on can be related to random walks 
[1-4]. A simple model of random walk is the lattice walk proposed by Polya [5]. A 
systematic generating function scheme for dealing with lattice walks has been established 
[6-81. However, one is only able to use this generating function method to study random 
walks on some simple regular networks. Analytic methods applied to the problem of random 
walks on irregular networks are obviously needed and have been considered by Goldhirsch 
and Gefen [9, lo]. In this letter we will define a structure factor matrix and generalize 
lhe generating function method to study random walks on a class of complex networks, 
namely those consisting of a finite number k of translated copies of a given lattice. In more 
elementary words, such a network may be a superlattice or a lattice with k atoms per cell. 

The elementary quantity of lattice walks is the probability Pn(J, I) that the walker starts 
from point(vect0r) I and is at J after n steps. For simple regular networks, the probability 
distribution f ( J ,  I) depends only on the difference of its arguments 

(1) f(J. I )  = f(J - I) 
and one can define a function by an identical distribution f(I): 

S(Q) = f(l)ei".' 
I 

which is called the structure factor of the walk [I]. With S(S2) the generating function 
technique can be used conveniently. For complex networks, however, equation (1) is 
untenable and one cannot define the structure factor by equation (2). The generating function 
scheme seems to be powerless. 

Consider an infinitely d-dimensional complex network. In general, the probability 
distribution f(J, I )  is a function of both I and J and it does not satisfy equation (1). 
However, if we can divide all lattice points into k categories provided that the lattice points 
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belonging to the same category are translationally invariant. Then, given i(i = 1,2, ..., k), 
for all Ii one has 

(3) 

where y ( I - I i )  denotes the probability distribution of category i. Furthermore, equation (3) 
satisfies 

f v ,  ri) = f f ( r  - ri) 

To use the generating function technique, we introduce a structure factor matrix &$I) 
with its elements defined by 

where the summation are over all the lattice vectors of category j .  Given i and j ,  one can 
see eom equation (5) that Sij(S2) can be determined solely. 

We now tum to the derivation of the probability Pn(J, I) that the walker starts from I 
and is at J after n steps. Note that Pn(J, I) satisfies the difference equation 

In order to solve equation (6) we define the generating function 
m 

' P ( J ,  I ,  z) = P,,(J. nzn 
"=O 

and the transformed generating function 

G ( Q  I ,  Z) = P ( J ,  I, Z)ein'J 
3 

respectively. For convenience, we  write the tmnsfonned generating function in another 
form 

m 

G(Q. I. Z) = P,(n, 02" (9) 
n=O 

where 

is the characteristic function of P,(J, I). To derive P,(J, I), consider first the probability 
P.(Jj, I) that the walker starts from I and is at Jj of category j after n steps. P,,(Jj, I) 
also satisfies the difference equation 

P~+~(J~.I) = ~ ~ ( J ~ . I o P ~ ' , I ) .  (111 
I' 

Using equation (4) we have 



~ 
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Multiplying equation (12) by e'*'4 and summing over all the lattice points of category j ,  
one obtains 

~ 

where 

and 

Multiplying equation (13) by Z"+' and summing over n, we have 
k 

~j(n, r, z) - p / ( a ,  r)  = sij(n)~'(n, r, z)z ( 16) 
i=l 

where 

( 17) 
3, n=O 

and 
k 

G(Q I ,  z) = G ~ ( C Z ,  r ,  z). (18) 
i=I 

Obviously the set of equations (16) can be rewritten in a mahix form: 

ri - Z i ( n ) l e ( n ,  I, Z) = h(n, I) (19) 
with i being a k x k unit matrix. Let'k = 1 and I = 0, matrix equation (19) will reduce to 

(20) 

an algebraic equation: -, 
. .  \ 

[I - Z.S(st)]G(n, 0,Z) = 1 

which is well known for simple lattices [I]. So far, it can be seen that as long as the 
matrix elements of the structure factor can be found, the transformed generating functions 
Gi(Q I, Z) (i = 1.2, . . . , k )  can be determined by matrix equation (19) or the set of 
equations (16). Then the characteristic function P,(n, I) can be obtained from equation (9) 
by Cauchy's theorem which yields 

Pn(Ot, r)  = (Z?ri)-' I, Z)/Z"+' (21) 
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where the transfonned generating function G(f2, I, Z) may be obtained from equation (18). 
The probability P.(J, I) will be given by the inverse Fourier transform of equation (IO) as 

P,(J, 1) = (%)-“ / e-i*’r Pn(f2,Ddf2. (22) 

I - a  a - - - -  _ _  .... : . D... 
- 6 - 5  - 4 - 3  - 2 - 1  0 1  2 3  4 5  6 

Figure 1. Random walks on an infinitely one-dimensional dimerimtion chain. 

Finally, as an illustration of the above method, we consider a random walk on an 
infinitely one-dimensional dimerization chain as shown in figure 1. The coordinates of 
the lattice points are denoted by I = 0, f l ,  f2 , .  . .. For simplicity we consider only a 
Polya walk in which steps to nearest-neighbour lattice sites only are allowed. All the lattice 
points on the chain can be divided into two categories denoted by Ii = +l, k.3. . . ., and 
12 = 0, f2.314,. . ., respectively. Let (Y be the probability of a step from 11 to It - 1 or 
from I2 to 12 + 1 and 1 - (Y that from I I  to I, + 1 or from I2 to I2 - 1, respectively. Using 
equation (5) it is easy to obtain the matrix elements of the structure factor of the walk 

B 1 (Q) = MQ) = 0 (23) 

+ (1 - cY)e’* (W 

s I~(Q)  = C f l ( 1 2  - II)e’*(fz-f” 
b 

- - 
~ 2 1  (52) = f2 ( r l  - IZ)ei*(’l+) 

I ,  

(1 - ale-’* +a&* 
where we have used 

f ’ ( I l  - I ] )  = f2(1; - I z )  = 0 (26) 

P; (Q , 0) = s,j.oe’n’j (i = I ,  2) (27) 

for a Polya walk. Suppose the walker starts from 0, then using equation (14) one has 

l i  

and then 

P;(n,o)=o ~ P&2,0)=1. (28) 

G i  (Q, 0, Z) = zszi(Q)/Il - z2Siz(Q)&i(W 
G2(Q, 0, Z) = 1/11 - ZzS12(S2)Szl(Q)]. 

G(Q, 0, Z) = U + z&i(Q)l cZz”S;”,(Q)sg(Q). 

Substituting equations (23) and (28) in matrix equation (19) or the set of equations (16). it 
is easy to obtain that 

(29) 
(30) 

(31) 

And, further, using equation (18) yields 
m 

m a  

Substituting equation (31) in equation (21). it can easily be shown that 
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The probability Pn(I,  0) can be obtained by substituting equation (32) in equation (22) and 
using equation (24) and equation (U) which yields 

n = l , 3 , 5  ,.... 
(33) 
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